
Short Note

A heap-based algorithm for the study of
one-dimensional particle systems

Alain Noullez a,*, Duccio Fanelli b, Erik Aurell b,c

a CNRS, Observatoire de la Côote d�Azur, B.P. 4229, F-06304 Nice Cedex 4, France
b Department of Numerical Analysis and Computer Science, KTH, SE-100 44 Stockholm, Sweden

c Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden

Received 9 February 2001; received in revised form 20 December 2002; accepted 14 January 2003

Keywords: Event-driven simulations; Heap structure; One-dimensional gravitation

1. Introduction

In this paper, we discuss a fast algorithm which integrates numerically a one-dimensional system of N
interacting particles, provided the dynamics can be Lagrangian integrated between two successive colli-

sions. An important application is self-gravitating systems in one dimension, but similar models with

Lagrangian invariant or quasi-invariant force fields can also be treated.

One-dimensional systems have the important characteristic that the set of positions is well-ordered. This

means that allN � 1 possible collisions betweenN particles can be easily enumerated and that the neighbors of

two colliding particles can be found in Oð1Þ operations if we keep the particles sorted by position. It is then

possible to build an event-driven algorithm to simulate a set of particles by finding theminimumof all possible
collision times, evolving all particles up to that time and repeating the procedure [4,16]. At first sight, and in all

already published solutions, this involves OðNÞ operations per collision. However, in one dimension, it is

possible to update only the states of the two colliding particles and their next collision times with their two

nearest neighbors.Also, by using a heap structure [5,6,14], we can find theminimumof the set of collision times

using OðlogNÞ operations per collision. Although known since a rather long time, it is only recently that the

heap concept has been used in physical problems, like front propagation [15] or molecular dynamics simu-

lations of hard-sphere systems [8,9,12]. In this paper, we extend this technique to systems with force fields,

provided these are Lagrangian invariant, or quasi-invariant.
There are still many open questions regarding ergodicity or the nature of equilibrium of self-gravita-

tional systems, especially in one dimension [10,16,17]. It is thus very important to be able to simulate

systems with a large number of particles for long times. We have tried to optimize as much as possible the

speed of our heap implementation, as well as the numerical accuracy of the computation of particle tra-

Journal of Computational Physics 186 (2003) 697–703

www.elsevier.com/locate/jcp

*Corresponding author.

E-mail addresses: anz@obs-nice.fr (A. Noullez), fanelli@nada.kth.se (D. Fanelli), eaurell@nada.kth.se (E. Aurell).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00048-2

mail to: anz@obs-nice.fr

jectories, to avoid apparently chaotic behavior coming in fact from roundoff errors. The paper is organized

as follows. In Section 2, we discuss how the base concept of a heap can be improved for speed. Section 3

then shows how an efficient event-driven evolution scheme can be implemented by using the heap structure.

In Section 4, we apply this code to the numerical solution of the one-dimensional self-gravitating system.

This section also contains checks on the speed of the algorithm. In Section 5, we sum up our results and

discuss future applications.

2. Heap optimizations

The base idea of heaps [5,6,14] is to put key elements in a binary tree and ensure that they satisfy the heap

condition, that is that the value in any tree node is smaller than the value in its child nodes. This does not

completely order the set, but is enough to warrant that the smallest value in the heap is at the root. Also, the

heap condition can be maintained efficiently: if a node value is modified so that the heap condition is vi-

olated, we exchange the value with its parent node (if the value decreased) or with the smallest of its child

nodes (if the value increased) and we repeat the procedure, moving up or down the tree until the heap
condition is satisfied again or we reach the root or the leaves of the tree. The maximum number of op-

erations is bounded by the height of the tree, that is log2ðNÞ. Also, binary heaps can be represented effi-

ciently as arrays with the children of node i being at locations 2i and 2iþ 1, while its parent is bi=2c.
The concept of trees, and thus of heaps, can be generalized to bases larger than two [7]. In a base r tree,

each node has at most r subtrees so that the children of node i are riþ 2� r; . . . ; riþ 1 while the parent of

node i is bði� 2þ rÞ=rc ¼ dði� 1Þ=re. The height of the tree h ¼ logr N can be reduced by increasing r; on
the other hand, the work needed at each level of the tree to find the smallest child increases linearly with r.
Minimization of the expression r logr N suggests that the best branching ratio should be e, the base of
natural logarithms, but the processing of each level also incurs some work independent of r, and it is thus

better to choose some higher (integer) value. This is especially important on modern microprocessors that

access memory through caches which are filled in bursts of typically 4, 8, or 16 words. As the children of a

node are stored consecutively in memory, they can also be loaded all at the same time when fetching a cache

line, if the heap is cache-aligned [7], which can be realized by fiddling with the base address of the heap. On

all microprocessors we used (Alpha, Pentium, MIPS), we found that base 4 was much better than base 2,

while bases 8 and higher were slightly slower than base 4. The gain in speed between aligned base 4 heaps

and unaligned base 2 ones is significant, giving a factor 2 speedup in the heap processing, with 60% coming
from the choice of base and 40% from the memory alignment.

In our application, the elements have to be ordered both by collision times and by position, to find

quickly the neighbors of a colliding pair. The standard solution to this problem is to use a single sorted

instance of all elements, and to use indirect heap(s) containing only pointers to them [14]. But to get all the

benefits of aligned large base heaps, the comparison keys have to be present in the heap and not accessed

through pointers that would incur extra memory loads. We thus implemented semi-indirect heaps in which

the keys are inside of the heap, along with the pointers to the corresponding elements. Because pointers

have to be exchanged only when doing a swap, this implementation reduces nearly by half the number of
memory accesses (to at most r þ 1 memory loads and three memory writes if a swap occurs in a sift-down)

and is faster than other priority queue implementations like those decribed in [9].

3. The algorithm

We consider the motion of N colliding particles in a one-dimensional medium. The interaction is not

specified at this level: we only require that the equation of motion for a particle can be integrated in between

698 A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703

two successive collisions. Arrays of size N contain the states of the particles, such as position, velocity, and

acceleration, at the time of their last collision, stored in increasing order of the spatial coordinates. An

additional state variable associated to each particle is sj, the time it last experienced a collision.

The algorithm starts by computing the collision time of each particle with its neighbor to the right, and

the results are stored in an array of size N � 1, which is then turned into a heap. So that we do not need to

move the whole particles state while processing the heap, we introduce an indexing array, Particle-Heap

(PH ½��), mapping the position in the heap to the rank in space of the leftmost of the two particles (j and
jþ 1) involved in that collision (see Fig. 1). To update the list of predicted collision times of neighbors
particles, we also need the index array inverse to Particle-Heap, which we call Heap-Particle (HP ½��).
Hence for all j in the range 1 to N � 1, PH ½HP ½j�� ¼ j and HP ½PH ½j�� ¼ j. This condition will be preserved

at all times while we update the heap. Note that the collison times are really directly present in the heap,

and that the two indexing arrays then realize exactly the functions needed to implement the semi-indirect

heap.

Once the heap has been built, the minimum collision time tmin is at the root. The particles involved in the

first collision, j ¼ PH ½1� and jþ 1, are selected and their states evolved up to tmin where they are rearranged

by the collision (momenta simply exchanged in the case of elastic collision) and sj and sjþ1 are set equal to
tmin. Next the new predicted collision time between j and jþ 1 is computed and replaces the one at the root

of the tree. The root might now not fulfill the heap condition, so the heap array is re-arranged by sifting

down the root value, using at most OðlogNÞ operations, as discussed previously.

The next collision times of particles j and jþ 1 with their other nearest neighbor, j� 1 and jþ 2, re-

spectively, also need to be re-computed, see Fig. 2. To do this, particles j� 1 and jþ 2 are temporarily

moved forward in time up to tmin, where their new collision times are computed and put into the heap at

HP ½j� 1� and HP ½jþ 1�, replacing the old ones. As a consequence, the heap has to be re-arranged two more

times, again at a cost of at most OðlogNÞ for each modification.
The heap is now again in a consistent state with the next collision time at the root, and the whole

procedure can be repeated. The evolution can be stopped either after some fixed number of collisions Z, or
when the predicted time for the next collision becomes larger than some chosen final time Tend. In the end,

all particles are moved forward in time from their own sj to the final time which is either Tend or the time of

the last collision. In conclusion, the complexity of the algorithm is in the worst-case OðZ logNÞ plus lower-
order terms OðZÞ and OðNÞ.

Fig. 1. This figure shows the structure of a semi-indirect heap and the function of the two ‘‘shuffling’’ arrays PH ½�� and HP ½��. The first
array in the figure only contains the predicted collision times ordered as a heap, while the second contains the particle states stored in

increasing order of spatial positions. The two indexing arrays allow to move back and forth between the two sets.

A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703 699

4. Applications

Consider a one-dimensional (classical) self-gravitating system of N particles, all of the same mass m
normalized to be N�1. The Hamiltonian is

H ¼
XN

j¼1

p2j
2m

þ 2pGm2
XN

j¼1

XN

i>j

jxi � xjj; ð1Þ

where xj is the position of particle j, pj � mvj is the momentum conjugate to xj, and G is the gravitational

constant [3,4,10,16,17]. We choose as unit of length the spatial interval in which the particles are initially

contained, so the initial density q0 is equal to one. Also, the natural time scale which is the inverse of the

Jeans frequency xJ ¼ ð4pGq0Þ
1=2

can be set to unity if we take 4pG equal to one. Inbetween two collisions,

the acceleration of each particle is constant, and is proportional to the difference of number of particles on

its right and on its left, so that in the ðx; tÞ plane, the path of particles between collisions follows a parabola.

In this problem, the time evolution calculations have to be done with the greatest care to reduce nu-
merical errors. Indeed, the system is chaotic, i.e., dynamically unstable, and amplifies small perturbations.

First, finding the collision time of two particles implies solving a quadratic equation, which should be done

using the stable form of the schoolbook formula [11]. Next, moving the particles forward in time involves

evaluating a second-order polynomial and must be done using Horner’s rule to increase accuracy and re-

duce the number of floating-point operations to two on modern microprocessors equipped with a fused

multiply–add operation. Also, the collision point of two particles must be done using a common symmetric

formula to ensure they end up at the same point without systematic drifts.

Fig. 3 shows phase space portraits of this self-gravitating dynamics with particles initially uniformly
distributed in space, and velocity a smooth function of position. After caustic formation, the system de-

velops a spiral structure in phase-space.

The performance of the algorithm is confirmed by Fig. 4, which shows CPU time per collision vs.

number of particles in semi-logarithmic scale. The linear dependence on logN is clear in the range 300–

10000, and there is also a significant constant contribution coming from the floating point operations

needed to update the particles states. In the data of Fig. 4 (see caption), we reached speeds in excess of

4� 105 collisions/s, while on a DEC ALPHA-based workstation at 600 MHz, we got speeds of around

Fig. 2. Intersection of the trajectories of particles j and jþ 1 at time t ¼ tmin. The ringed intersections are the collision/crossings that

need to be recomputed.

700 A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703

1:3� 106 collisions/s for N equal to 1000. Hence this algorithm allows the study of fairly large systems for

long times on ubiquitous hardware.

The preceding discussion has made clear that the limiting factor for simulating a system up to a given
time Tend is the number of collisions Z that occur in that time interval. It is thus especially important to

know how Z scales with N . Heuristically, if the velocity of the particles is independent of N and their

Fig. 4. CPU time per collision measured as the output of the UNIX library function times() divided by the number of collisions,

after 30 Jeans time, for systems of various size N . The code was compiled by gcc on the Linux kernel 2.2 and ran on an Intel Pentium

II 450 MHz processor. Data points on the left are not very reliable because of the limited resolution of times().

Fig. 3. Phase space portrait of a self-gravitating system. The initial velocity profile is a double sine wave. In a short time, a caustic is

formed, where velocity is a multi-valued function of position and, after a few Jeans times, the system develops spiral structures in phase

space, due to the gravitational attraction preventing the particles from running away.

A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703 701

separation is � N�1, one expects that the average time between successive collisions for a given particle goes

like N�1, so the total collision rate should grow as N 2. Fig. 5 shows the number of collisions vs. physical

time, in double logarithmic coordinates, for different number of particles. Curves corresponding to different

Ns are parallel to each other and separated by the square of the ratio of their respective N , showing that the

proposed scaling holds true for different discretizations of the same initial conditions for all regimes.

5. Conclusions

We discussed the implementation of a fast heap-based event-driven scheme for integrating numerically

one-dimensional systems of N interacting particles, provided the dynamics can be integrated between two

successive collisions. The collision times are ordered on a heap, reducing the complexity to OðlogNÞ op-
erations per collision. As a consequence, for large values of N , the present algorithm is faster than earlier
algorithms in the litterature, which are OðNÞ. This opens up the perspective of studying the statistical

mechanics of such systems for large number of particles and long times.

In the paper, we presented classical (Newtonian) self-gravitating systems as one possible application of

our algorithm. Nevertheless, it is worth stressing that the algorithm is more general and, for example, can

also be applied to models of the motion of matter in an expanding Universe [1,2,13].

Acknowledgements

We thank U. Frisch, M. H�eenon, and P. Muratore-Ginanneschi for discussions. We also thank D. Za-

nette for pointing out reference [9]. This work was supported by RFBR-INTAS 95-IN-RU-0723 (E.A. and

D.F.), by the Swedish Natural Science Research Council through Grants M-AA/FU/MA 01778-333 (E.A.)
and M-AA/FU/MA 01778-334 (D.F.).

Fig. 5. Number of collisions vs. time for different number of particles. We can clearly distinguish an early regime, before many

collisions have occurred, a late regime (after about 10x�1
J) where the collision rate becomes constant, and an intermediate regime. For

all times, the number of collisions goes as N 2.

702 A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703

References

[1] E. Aurell, D. Fanelli, P. Muratore-Ginanneschi, Physica D 148 (2001) 272.

[2] D. Fanelli, E. Aurell, Astron. Astrophys. 395 (2002) 399.

[3] J.M. Dawson, Phys. Fluids 5 (1962) 445.

[4] O.C. Eldridge, M. Feix, Phys. Fluids 5 (1962) 1076.

[5] J.H. Kingston, Algorithms and Data Structures—Design, Correctness, Analysis, Addison-Wesley, Reading, MA, 1998.

[6] D.E. Knuth, The Art of Computer Programming, Volume 3 Sorting and Searching, Addison-Wesley, Reading, MA, 1973.

[7] A. LaMarca, R.E. Ladner, ACM J. Exp. Algorithmics 1 (1996) 4.

[8] M. Marin, D. Risso, P. Cordero, J. Comput. Phys. 109 (1993) 306.

[9] M. Marin, P. Cordero, Comput. Phys. Commun. 92 (1995) 214.

[10] C.J. Reidl, B.N. Miller, Phys. Rev. A 46 (1992) 837;

Phys. Rev. E 48 (1993) 4250;

B.N. Miller, P. Youngkins, Phys. Rev. Lett. 81 (1998) 4794.

[11] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing,

Cambridge University Press, Cambridge, 1988.

[12] D.C. Rapaport, J. Comput. Phys. 34 (1980) 184.

[13] J.L. Rouet, M.R. Feix, M. Navet, Vistas in Astronomy 33 (1990) 357;

J.L. Rouet et al., Lecture Notes in Physics: Applying Fractals in Astronomy, vol. 161, 1991.

[14] R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, MA, 1990.

[15] J.A. Sethian, SIAM Rev. 41–42 (1999) 199.

[16] G. Severne, M. Luwel, Astrophys. Space Sci. 122 (1986) 299.

[17] T. Tsuchiya, T. Konishi, N. Gouda, Phys. Rev. E 50 (1994) 2607;

T. Tsuchiya, N. Gouda, T. Konishi, Phys. Rev. E 53 (1996) 2210.

A. Noullez et al. / Journal of Computational Physics 186 (2003) 697–703 703

	A heap-based algorithm for the study of one-dimensional particle systems
	Introduction
	Heap optimizations
	The algorithm
	Applications
	Conclusions
	Acknowledgements
	References

